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ABSTRACT 
In some applications, the number of quality characteristics is larger than the number of observations 
within subgroups. Common multivariate control charts to monitor the variability of such high-
dimensional processes are unsuitable because the sample covariance matrix is not positive semi-
definite and invertible. Moreover, the impact of gauge imprecision on detection capability of 
multivariate control charts under high-dimensional setting has been clearly neglected in the literature. 
To overcome these shortcomings, this paper develops a ridge penalized likelihood ratio chart for 
Phase II monitoring of high-dimensional process in the presence of measurement system errors. The 
developed control chart departures from the assumption of sparse variability shifts in which the 
assignable cause can only affect a few elements of the covariance matrix. Then, to compensate for the 
adverse impact of gauge impression, the developed chart is extended by employing multiple 
measurements on each sampled item. Simulation studies are carried out to study the impact of 
imprecise measurements on detectability of the developed monitoring scheme under different shift 
patterns. The results show that the gauge inability negatively affects the run-length distribution of the 
developed control chart. It is also found that the extended chart under multiple measurements strategy 
can effectively reduce the error impact. 
 
KEYWORDS: High-dimensional process; Covariance matrix; Measurement errors; Ridge penalized 
likelihood ratio statistic; Multiple measurements per item.  
 
 

1. Introduction1 
In today’s competitive markets, companies are 
increasingly focusing on a large number of 
process quality characteristics to keep their 
market share, enhance customer satisfaction, and 
keep ahead of competition. Fortunately, the 
recent advances in data acquisition technologies 
have provided the possibility of collecting a great 
deal of information regarding quality 
characteristics of interest. On the other hand, data 
analysis obtained from each sample in processes 
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with a large number of quality characteristics 
entails a considerable amount of time and cost. In 
such situation, taking large samples has two main 
drawbacks: (1) it imposes a severe cost on 
manufacturer; (2) in manufacturing systems with 
low production speed, it is not possible to wait 
until a sufficient sample size be collected. 
Consequently, the quality practicians may face 
conditions in which the number of process 
quality characteristics is larger than the sample 
size called “high-dimensionality”. In this regard, 
[1] developed an improved version of the 
generalized T2 chart based on random matrix 
theory for Phase II monitoring of high-
dimensional; process mean. [2] integrated a 
divide-and-conquer strategy and multivariate 
exponentially weighted moving average 
(MEWMA) statistic for monitoring high-
dimensional processes in which normality 
assumption of quality characteristics is relaxed 
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[3] presented an integrated monitoring and 
diagnosis method based on principal component 
analysis (PCA) for high-dimensional data 
streams.  
Using commonplace control charts to monitor the 
variability of high-dimensional processes is 
challenging because the sample covariance 
matrix is not positive semi-definite and its 
determinant tends toward zero. To overcome this 
problem, [4] proposed a novel algorithm based on 
parallelized Monte-Carlo simulation to enhance 
the sensitivity of two memory-type control charts 
for monitoring the variability of high dimensional 
processes. They employed different techniques 
for decreasing the computing space and run time. 
An adaptive LASSO-thresholding-based control 
chart for Phase II monitoring of multivariate 
normal quality characteristics under high-
dimensional setting was suggested by [5] 
suggested. Using different out-of-control 
patterns, they confirmed the superiority of their 
proposed control chart over existing control 
charts. In contrast to the above-mentioned 
studies, [6] focused on detection of general 
changes in covariance matrix elements without 
sparsity assumption in Phase II monitoring of 
high-dimensional process variability. [7] 
extended the LASSO-thresholding-based control 
chart for Phase I monitoring of multivariate 
processes in condition that the process dimension 
is larger than the sample size. Using a real 
industrial data from the process of spur gear 
production, they validated the applicability of 
their proposed control chart. [8] gave the idea of 
tracking changes in sparse leading eigenvalue 
between two covariance matrices and studied 
Phase I monitoring high-dimensional process 
variability. [9] integrated ridge penalized 
likelihood ratio (RPLR) statistic and multiple 
dependent state sampling (MDS) strategy for 
monitoring high-dimensional covariance 
matrices. Then, they presented an improved 
version of the developed monitoring scheme 
based on generalized multiple dependent state 
sampling. The adverse effect of gauge inaccuracy 
on the performance of the adaptive thresholding 
LASSO control charting method for monitoring 
high-dimensional process variability was 
evaluated by [10]. They showed that the 
developed charting method has a better 
performance than the entropy chart in both with 
and without measurement error conditions. [11] 
equipped the adaptive thresholding LASSO chart 
with double sampling (DS) strategy for 
improving the chart sensitivity in reacting to 

deviations of covariance matrix elements from 
their nominal values.  
A vital issue affecting the performance of 
multivariate control charts is the ability of 
measurement system to accurately measure the 
quality characteristics of interest. Although some 
sources of uncertainty caused by the 
measurement devices always exist in reality, 
most existing control charts have been 
established based on the assumption of precise 
measurements. The existence of measurement 
error which is defined as the difference between 
the accurate and measured values of the process 
quality characteristics can significantly affects 
the performance of control charts. Consequently, 
it is crucial to develop the chart statistic by: (1) 
taking the measurement error component into 
account; (2) employing remedial strategies to 
reduce the impact of measurement inaccuracy on 
chart performance. Fortunately, the impact of 
measurement errors on detection capability of 
control charts have been well documented by 
recent studies such as [12-17]. More specifically, 
in the context of multivariate control charts, [18] 
used a linearly covariate error model and probed 
the impact of imprecise measurements on 
sensitivity of the variable sampling intervals 
(VSI) Hotelling's T2 control chart. The impact of 
gauge measurement errors using a linear 
covariate model on the performance of the 
Hotelling CoDa (Compositional Data) T2 control 
chart was studied by [19-20] studied the 
influence of gauge measurement errors on the 
performance of some one-sided variable 
sampling interval (VSI) EWMA-based control 
charts to monitor the multivariate coefficient of 
variation. More studies can be found in [21-25]. 
Interested readers can refer to review paper 
provided by [26]. 
This paper proposes a ridge penalized likelihood 
ratio chart with five important features: (1) it can 
be employed to monitor multivariate process 
variability when the process dimension exceeds 
the sample size; (2) it departures from the 
assumption of sparse in-control covariance 
matrix; (3) in contrast to the existing charts for 
monitoring high-dimensional process variability 
that are only applicable for sparse changes, it can 
be used for detecting general shift patterns in the 
original variability matrix; (4) it takes the 
existence of gauge imprecision into account; and 
(5) it develops multiple measurements strategy to 
compensate for the undesired impact of error 
variance on chart performance.  Note that, sparce 
variability changes is referred to condition that 
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only few covariance matrix elements are 
simultaneously effected by assignable.  
The structure of this paper is organized as 
follows: The ridge penalized likelihood ratio 
statistic considering an additive covariate model 
is developed in Section 2. To reduce the 
undesired impact of contaminated data due to 
gauge impression, the developed chart is 
extended on the basis of multiple measurements 
strategy in Section 3. Simulation studies in terms 
of run length properties are conducted in Section 
4 to compare the detection capability of the ridge 
penalized likelihood ratio chart under with and 
without errors scenarios. Ultimately, Section 5 
furnishes the conclusions of our proposed charts 
and provides some recommendations for future 
studies. 
 
 
 
 

2. RPLRME Control Chart 
In this section, a control chart for Phase II 
monitoring of high-dimensional process 
variability is developed based on the ridge 
penalized likelihood ratio statistic under the 
gauge measurement errors. The developed chart 
hereafter called RPLRME chart has the following 
advantages: (1) considering general covariance 
matrix shift patterns without the sparsity 
assumption, (2) detecting covariance matrix 
abnormalities even when the process dimension 
exceed the subgroup size, (3) taking into account 
the gauge inability to accurately measure the 
value of process quality characteristics, and (4) 
presenting a closed from to estimate the precision 
matrix in contrast to the conventional penalized 
likelihood ratio-based charts which suffer from 
complex computational procedures. In this 
regard, first the variables and parameters used to 
establish the RPLRME chart are summarized in 
Table 1. 

 
Tab. 1. Notations 

Notation Description 
Indices  

t  Index of subgroups 
i  Index of observations 
,j k  Index of quality characteristics 
r   Index of measurements per item 

Distribution parameters   

tX  Accurate values matrix of observations in subgroup t   

tix  thi observation vector of quality characteristics in subgroup t    

tjkx  thi  observation of thj  quality characteristic in subgroup t  
p  Number of quality characteristics 

Xμ  Mean vector of tX  

XΣ  Covariance matrix of tX  

,icXΣ   In-control covariance matrix of tX  

,ocXΣ   Out-of-control covariance matrix of tX  

jk   Covariance of quality characteristics j  and k  
2
j   Variance of thj  quality characteristic 

Chart parameters  
   Probability of Type I error 
n   Sample size 
   Tuning parameter 

RPLRME   Statistic of ridge penalized likelihood ratio with measurement errors 
RPLRMME  Statistic of ridge penalized likelihood ratio under multiple measurements 

RPLRMEUCL   Upper control limit of RPLRME chart  

RPLRMMEUCL   Upper control limit of RPLRMME chart  
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Error parameters  

tε   Error terms matrix in subgroup t  

tiε  The thi  column of tε  

εμ   Mean vector of ijε  

εΣ   Covariance matrix of ijε   
2
, j  Variance of error term related to quality characteristic j  

A  Intercept coefficients vector of multivariate additive covariate model  
B  Slope coefficients vector of multivariate additive covariate model 

tY  Measured values matrix of observations in subgroup t   

 Y Xμ A Bμ   Mean vector of tY  
T Y X εΣ BΣ B Σ   Covariance matrix of tY  

,icYΣ   In-control covariance matrix of tY  

Ω   Precision matrix of tY  

icΩ   In-control precision matrix of tY  
m
icΩ   In-control precision matrix of tY  

ˆ MLE
tΩ   Estimated precision matrix of tY  based on MLE 

ˆ RPLRME
tΩ   Estimated precision matrix of tY  based on RPLRME 

ˆ RPLRMME
tΩ  Estimated precision matrix of tY  based on RPLRMME 
m   Number of measurements on a given item 

Others  

tS  Sample covariance matrix in subgroup t  

m
tS   Sample covariance matrix in subgroup t  under multiple measurements per item 

icARL  In-control average run length 

ocARL  Out-of-control average run length 

icSDRL   In-control standard deviation of run length  

ocSDRL   Out-of-control standard deviation of run length  

   Sampling interval in which an assignable cause occurs 

T  Sampling interval in which the chart signals an out-of-control signal 

 
Let 1 2( , ,..., ) ; 1,2,...,t t t tn p n t T X x x x  be a 

p n  matrix of observations collected at tht  

sampling point in which the thi  observation 

denoted as  1 2, ,..., ; 1,...,
T

ti tj tj tjpx x x i n x  
follows a p-variate normal distribution. The 
occurrence of assignable causes at sampling point 
  changes the process  covariance matrix from 

ic
XΣ  to oc

XΣ . In fact, for subgroups 1,2,...,t  , 
the process parameters remain in-control i.e., 

( , )ic
ti MVN X Xx μ Σ  whereas we have 

( , )oc
ti MVN X Xx μ Σ  at sampling points 

1,...,t T  . In this study, we consider an 
additive covariate model to associate the accurate 
values of quality characteristics with their 
corresponding measured values as:  
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t t t  Y A BX ε  (1) 
 
where 1 2( , ,..., )t t t tn p nY y y y  denotes the 

matrix of measured quality characteristics at tht  

sampling stage while  1 2, ,...,
T

pa a aA and 

1

2

0 0
0 0

0 0 p p p

b
b

b


 
 
   
  
 

B




   


 contain constant 

intercept and slope error model parameters, 
respectively. Moreover, 1 2( , ,..., )t t t tn p nε ε ε ε  
represents the matrix of error values which 

follows a p-variate normal distribution with 
parameters  0,0,...,0 Tεμ , 

2
,1

2
,2

2
,

0 0
0 0

0 0 p












 
 
   
  
 

εΣ




   


 and is independent 

from tX . According to Equation (1), 
; 1,...,ti i ny  

follows a p-variate normal distribution with mean 
vector Yμ  and covariance matrix YΣ  as: 

 
 Y Xμ A Bμ   (2) 

2 2 2
1 1 ,1 1 2 12 1 1

2 2 2
2 1 12 2 2 ,2 2 2

2 2 2
1 1 2 2 ,

p p

p pT

p p p p p p p p p

b b b b b
b b b b b

b b b b b







   
   

   


 
 

     
   

Y X εΣ BΣ B Σ




   


 (3) 

 
In order to estimate the precision matrix Ω , the 

likelihood function at tht  sampling stage given 
the vectors 1 2, ,...,t t tny y y is constructed as:  
 

 
   

1
1
22

1( ,..., ) 2

n
T

ti Y ti Y
i

p

t tnf n e 

   


y μ Ω y μ

y y Ω Ω  (4) 

 
where 1 YΩ Σ  . The maximum likelihood 
estimator (MLE) of precision matrix can be 
estimated by solving the optimization problem as 
below: 
 

  ˆ argmin logMLE
t ttr 

Ω
Ω ΩS Ω  (5) 

 

where   
1

1 n
T

t ti Y ti Y
in 

  S y μ y μ  denotes 

the sample covariance matrix for tht  random 
subgroup. For sampling stage ; 1,...,t t T , the 
optimum solution of the mathematical 
programming (5) will be equal to the inverse of 
the sample covariance matrix as 1ˆ MLE

t t
Ω S . 

However, using MLE approach to estimate the 

precision matrix is inapplicable when p  is larger 
than n  because tS  is not invertible. For two 
reasons of: (1) shrinking the unchanged elements 
in YΣ to the corresponding ones in ,icYΣ ; and (2) 
overcoming the invertibility limitation of the 
estimated precision matrix, the 2L  penalty term is 
added to mathematical programming (5) by 
taking the idea of ridge panelized likelihood ratio 
(RPLR) procedure. Based on this procedure, the 
precision matrix of high-dimensional process 
under measurement errors denoted by ˆ RPLRME

tΩ
can be estimated as: 
 

 ˆ argmin log
2

RPLRME
t t ictr      

 Ω
Ω ΩS Ω Ω Ω  

(6) 

 
where 1

,ic ic
 YΩ Σ  and ; 0    is a tuning 

parameter which is employed to obtain various 
levels of shrinkage of ˆ RPLRME

tΩ . Based on the 

mathematical programming (6), ˆ RPLRME
tΩ  can be 

attained according to Equation (7). 
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   
11

221 1ˆ
4 2

RPLRME
t p t ic t ic  


 
        
   

Ω I S Ω S Ω  (7) 

 
It can be concluded  from Equation (7) that 
ˆ RPLRME

tΩ  tends toward icΩ  when    while 

in situation that 0  , ˆ RPLRME
tΩ  approaches 1

t
S . 

Determining the status of high-dimensional 
process variability under gauge measurement 
errors is equivalent to conducting the following 
hypothesis test: 
 

0 ,

1 ,

:

:

T
ic

T
ic

H

H

 

 
Y X ε

Y X ε

Σ BΣ B Σ

Σ BΣ B Σ
 (8) 

For tht  random sample, the developed statistic 
based on the integration of the ridge penalized 
likelihood ratio estimator and the measurement 
errors (RPLRME) can be written as:  

   ˆ ˆln lnRPLRME RPLRME
t ic t t ic t tRPLRME tr tr   Ω S Ω Ω Ω S  (9) 

 
The RPLRME chart issues an out-of-control 
signal whenever t RPLRMERPLRME UCL  where 
the value of RPLRMEUCL  is selected so that the in-
control average run length ( icARL ) be equal to 
1


. Note that the average run length is defined as 

the expected value of a run length random 
variable which specifies the number of samples 
till issuing an out-of-control signal.  
 

3. RPLRME Control Chart Under 
Multiple Measurements Approach 

In order to increase the chart detectability and get 
more robust results, the undesired impact of 
gauge imprecision should be diminished by 
employing remedial approaches. In this regard, 
multiple measurements strategy as one of the 
most efficient remedial methods was proposed by 
[27] and has been employed in some other studies 
such as [28-30]. Taking multiple measurements 
on each sampled point instead of individual ones 
enhances the chart sensitivity due to reduction of 

the extra variability caused by error term. Based 
on this, a novel control chart hereafter called 
RPLRMME is established by extending the 
RPLRME chart under multiple measurements 
strategy. Let 1 2( , ,..., )t t t tn p nY y y y  denotes the 

observations taken at the tht  subgroup where each 
sample unit is inspected ; 1m m   times. Besides, 

1 2( , ,..., )T
ti ti ti tipy y yy  represents the elements of 

the thi  column of observations matrix tY  where 

1

m

tijr
r

tij

y
y

m



. It can be statistically checked that 

tiy  follows a p-variate normal distribution with 
mean vector   XYμ A Bμ  and covariance 

matrix T

m
  ε

XY
ΣΣ BΣ B . Accordingly, the 

covariance matrix of  tiy  can be rewritten as: 

 
2
,12

1 11 1 2 12 1 1

2
,22

2 1 12 2 22 2 2

2
,2

1 1 2 2

p p

p p

p
p p p p p pp

p p

b b b b b
m

b b b b b
m

b b b b b
m








  


  


  



 
 

 
 
   
 
 
 

 
 

YΣ





   



 (10) 

 
The likelihood function under taking m  
measurements on each sampled item is 
constructed by replacing tiy  by tiy in Equation 

(4). For tht  random sample, the estimation of 
precision matrix to construct the RPLEMME 
chart is: 
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 ˆ argmin log
2

RPLRMME m m
t t ictr      

 Ω
Ω ΩS Ω Ω Ω  (11) 

where   
1

1 n Tm
t ti tiY Y

in 

  S y μ y μ .  

Equivalently, we can write: 
 

   
11

221 1ˆ
4 2

RPLRMME m m m m
t p t ic t ic  


         
   

Ω I S Ω S Ω  
(12) 

Using RPLRMME chart for Phase II monitoring 
of high-dimensional process variability is 
equivalent to test the null hypothesis 

0 : TH
m

  ε
0Y

ΣΣ BΣ B  versus the alternative 

one 1 : TH
m

  ε
0Y

ΣΣ BΣ B . The developed 

chart statistic at the tht  sampling stage is given 
as: 

   ˆ ˆln lnm m RPLRMME m RPLRMME m
t ic t t ic t tRPLRMME tr tr   Ω S Ω Ω Ω S  (13) 

 
A signal is triggered by The RPLRMME if 

t RPLRMMERPLRMME UCL  where the value of 

RPLRMMEUCL  is set based on simulation 
experiments to achieve a pre-determined icARL . 
 

4. Performance Comparison 
In this section, the impact of inaccurate 
measurements on efficiency of the RPLR chart is 
investigated based on Monte Carlo simulations. 
Consider a multivariate process in which the 
product quality is characterized via 10p   
normally distributed variables. It is assumed that 

, 10ic XΣ I  when the process is in-control. The 
parameters of the RPLRME chart are selected as 

5n   and 10  . We consider an additive 
covariate model with constant values of 10 1A 0  

and 10B I  in which 

 2 2 2
, ; 0,0.05,0.1,0.15,0.2,0.25j       for 
1,...,10j  . It is worth mentioning that the case 

2 0   implies that the observations are 
collected under without measurement errors 
condition. For each value of 2

 , the 

RPLRMMEUCL  is set subject to 200icARL  . Then, 
the sensitivity of the RPLRME chart under seven 
out-of-control scenarios is evaluated in terms of 

ocARL  and ocSDRL . These scenarios include 
diagonal, off-diagonal as well as concurrent 
diagonal/off-diagonal disturbances as follows: 
Scenario 1: The occurrence of assignable cause 
leads to shifts in all covariance matrix elements 
as follows: 

 
2 21 ; 1,...,10 and ; , 1,...,10 &  j jkj j k j k          (14) 

 
Scenario 2: The second out-of-control scenario is 
similar to the first scenario with this difference 

that the assignable cause affects the variance and 
covariance elements of the first five variables. 

  
2 21 ; 1,...,5 and ; , 1,...,5 &  j jkj j k j k          (15) 

 
Scenario 3: In this condition, the variance and 
covariance elements of the first and second 
variables are affected as Equation (16):  
 

2 2
12 211 ; 1,2 and j j                    (16) (16) 

 
Scenario 4: As given in Equation (17), the 
occurrence of assignable cause affects all 
variance elements while the covariance elements 
remain unchanged. 
 

2 21 ; 1,...,10 j j     (17) 
 
Scenario 5: The out-of-control condition is 
restricted to only the variance of the first 
variable. In other words, the other 99 
variance/covariance elements remain unchanged: 
 

2 2
1 1    (18) 

 
Scenario 6: As seen in Equation (19), the out-of-
control covariance matrix includes off-diagonal 
disturbances related to the first five variables. 
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; , 1,...,5 &  jk j k j k     (19) 
 
Scenario 7: This scenario is similar to the 
previous scenario with this difference that the 
assignable cause changes the covariance of the 
first and second variables.  
 

12 21     (20) 
 
The resulting ARLs and SDRLs of the developed 
RPLRME chart for both with and without error 
cases under the mentioned out-of-control 
scenarios when  0,0.1,0.2,0.3,0.5,0.75,1   are 
presented in Tables 2-8. As seen from Tables 2-8, 
the gauge measurement errors diminishes the 
detecting capability of the developed RPLRME 
chart to react to the sustained changes in 
covariance matrix elements. It can be confirmed 
from Tables 2-8 that the ARL and SDRL values 
increase as the error variance increases. That is to 
say that the larger value of 2

 , the larger values 
of both ocARL  and ocSDRL . Specifically, it can 
be observed from Table 2 that for 0.1  , the 
chart obtains 71.8085ocARL   when the 
measurements are accurate. However, the 
existence of measurement errors increases the 
value of ocARL  to 78.2490, 84.9975, 89.4355, 
95.9365, and 96.1550 when 2

  equals to 0.05, 
0.1, 0.15, 0.2, and 0.25, respectively. In other 
words, for 0.1,   increasing the error variance 
to 0.05, 0.1, 0.15, 0.2, and 0.25 leads to reducing 
the chart sensitivity about 8.97, 18.37, 24.55, 
33.60, and 33.90 percent, respectively, when the 
covariance matrix elements are affected 
according to the first out-of-control scenario. The 
results of Table 3 indicate that both the values of 

ocARL  and ocSDRL  in scenario 2 are always 
larger than those of scenario 1. This is due to the 
fact that, in spite of the first scenario, the 
assignable cause affects 25 percent of the 
covariance matrix elements in the second 
scenario. For instance under the second scenario, 
when 2 0.1   and 0.3  , the developed chart 

obtains 41.1420ocARL   which is remarkably 
larger than that of the first scenario, i.e. 

9.8935ocARL  . It can be also concluded from 
comparing the results of Tables 2-4 that the 
capability of the developed chart to detect 
covariance matrix anomalies significantly 
reduces when the assignable cause affects the 
process variability according to the third out-of-
control scenario.  
Table 5 reveals that as the error variance 
increases from 0 to 0.25, the efficiency of the 
RPLRME control chart to detect diagonal 
covariance matrix shifts reduces, dramatically. 
For instance, for 0.5  , increasing the error 
variance from 0.05 to 0.25 result in increasing the 
value of ocARL  from 14.3550 to 18.7240. That is 
to say, under the mentioned condition, the 
detection capability of the RPLRME chart 
degrades about 30.43 percent. Besides, the 
impact of off-diagonal shifts on detection 
performance of the developed chart can be 
disclosed by comparing the results of Tables 2 
and 5. For more clarification, under the case 

2 0.1   when 0.5  , we have 
3.6375ocARL   when both diagonal and off-

diagonal are affected by the assignable cause 
while the RPLRME chart detects the sustained 
shift in diagonal elements after average of 
15.5630  samples. The results of Tables 6 and 8 
tells us that in contrast to the other charts 
developed for monitoring high-dimensional 
processes, the proposed RPLRME scheme can 
detect sparse shifts when only few number of 
covariance matrix elements are changed. 
However, as expected, the occurrence of such 
shifts is detected with a delay when the 
magnitude of shift is small. It is clear from the 
values of ARLs and SDRLs shown in Table 7 that 
similar to the previous out-of-control scenarios, 
the existence of measurement error causes a 
delay in the detection of shift when only off-
diagonal elements change from their nominal 
values.

 
Tab. 2. ARL and SDRL comparison under different error variance values in scenario 1 

   Criterion 
RPLRMEUCL   

4.8104 5.1018 5.3913 5.6462 5.8613 6.0642 
2 0   2 0 .05    2 0.1   2 0 .15   2 0.2   2 0.25   

0 ARL 200.0270 200.3655 200.6080 200.2390 200.0824 199.2450 
SDRL 198.3768 202.8921 203.3510 199.1435 202.0609 202.5535 

0.1 ARL 71.8085 78.2490 84.9975 89.4355 95.9365 96.1550 
SDRL 69.2305 75.6523 83.7848 87.6284 95.5930 97.5912 
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0.2 ARL 18.9235 21.1540 23.9755 24.8830 28.4755 30.4290 
SDRL 18.5084 20.5907 22.9208 24.2471 28.5526 30.4888 

0.3 ARL 7.9315 8.6975 9.8935 10.9760 12.0225 13.4650 
SDRL 7.5446 8.3050 9.8936 10.4862 11.4784 12.8001 

0.50 ARL 3.2080 3.3755 3.6375 3.9580 4.0320 4.5755 
SDRL 2.6986 2.9492 3.0089 3.3062 3.4802 3.9587 

0.75 ARL 1.7765 1.8815 1.9365 2.0780 2.1435 2.2315 
SDRL 1.2285 1.2966 1.4041 1.4846 1.5672 1.6713 

1 ARL 1.3030 1.3510 1.4155 1.4745 1.4895 1.5155 
SDRL 0.6176 0.7043 0.7518 0.8501 0.8504 0.8923 

 
Tab. 3. ARL and SDRL comparison under different error variance values in scenario 2 

   Criterion 
RPLRMEUCL   

4.8104 5.1018 5.3913 5.6462 5.8613 6.0642 
2 0   2 0 .05    2 0.1   2 0 .15   2 0.2   2 0.25   

0 ARL 200.0270 200.3655 200.6080 200.2390 200.0824 199.2450 
SDRL 198.3768 202.8921 203.3510 199.1435 202.0609 202.5535 

0.1 ARL 151.7150 152.8570 158.2295 159.8290 160.9275 165.6505 
SDRL 156.9350 152.4835 154.4426 160.0299 160.4088 162.3510 

0.2 ARL 73.4590 77.5315 84.9070 86.7075 94.6700 97.8320 
SDRL 75.5450 78.4171 82.8794 87.7331 95.1895 97.7902 

0.3 ARL 33.2720 36.4045 41.1420 43.0160 46.2385 49.7135 
SDRL 33.1084 34.3605 40.1299 41.8369 46.8872 49.5135 

0.5 ARL 10.2085 10.6500 12.3230 13.5325 14.4355 15.7470 
SDRL 9.6701 10.5633 11.9362 13.7195 13.7217 14.8825 

0.75 ARL 3.9700 4.4025 4.5290 5.1435 5.5450 5.7540 
SDRL 3.3421 3.9340 4.1704 4.6375 4.9773 5.0501 

1 ARL 2.2880 2.4870 2.5055 2.6805 2.8160 3.0440 
SDRL 1.7273 1.9702 1.9774 2.0299 2.2380 2.5104 

 
Tab. 4. ARL and SDRL comparison under different error variance values in scenario 3 

   Criterion 
RPLRMEUCL   

4.8104 5.1018 5.3913 5.6462 5.8613 6.0642 
2 0   2 0 .05    2 0.1   2 0 .15   2 0.2   2 0.25   

0 ARL 200.0270 200.3655 200.6080 200.2390 200.0824 199.2450 
SDRL 198.3768 202.8921 203.3510 199.1435 202.0609 202.5535 

0.1 ARL 182.4620 189.9020 191. 1520 192.2425 193.5325 194.8600 
SDRL 177.0263 184.1790 191. 2818 192.2316 194.6210 194.7752 

0.2 ARL 167.4450 168.2690 170.4525 172.6790 174.1975 175.1330 
SDRL 167.1549 168.0785 168.1042 172.6253 174.1035 174.3643 

0.3 ARL 134.4550 135.1255 137.6800 140.4765 142.0880 143.0055 
SDRL 131.0360 135.3170 138.0111 142.3586 140.4695 141.4138 

0.50 ARL 62.5985 64.9740 71.8440 74.7880 75.4545 78.3770 
SDRL 64.5629 64.7282 70.1587 74.9071 75.5362 79.3273 

0.75 ARL 23.3575 24.8950 27.0560 28.9930 30.9645 32.3025 
SDRL 22.7927 24.6502 26.9691 28.8862 30.0898 31.9370 

1 ARL 9.1005 10.0330 10.6560 11.6480 12.7095 13.9965 
SDRL 8.6486 9.5330 9.9441 10.8227 12.4205 13.3382 

 
Tab. 5. ARL and SDRL comparison under different error variance values in scenario 4 

   Criterion 
RPLRMEUCL   

4.8104 5.1018 5.3913 5.6462 5.8613 6.0642 
2 0   2 0 .05    2 0.1   2 0 .15   2 0.2   2 0.25   

0 ARL 200.0270 200.3655 200.6080 200.2390 200.0824 199.2450 
SDRL 198.3768 202.8921 203.3510 199.1435 202.0609 202.5535 

0.1 ARL 181.3370 183.9370 184.1130 185.3660 186.0315 187.4475 
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SDRL 184.0674 184.4873 184.7206 185.5717 185.3361 187.5506 

0.2 ARL 112.3760 118.1060 121.7320 121.89085 122.5630 123.8915 
SDRL 111.1317 118.6844 117.1182 123.3894 122.9964 123.4841 

0.3 ARL 61.3020 61.8475 66.8410 69.9680 70.2390 70.8125 
SDRL 61.0218 61.8580 65.4398 69.6326 70.5960 70.6627 

0.50 ARL 13.4815 14.3550 15.5630 16.6285 17.3055 18.7240 
SDRL 12.8838 14.3760 15.1277 16.3202 17.5520 18.4422 

0.75 ARL 2.7455 2.9370 3.1570 3.3265 3.5515 3.8760 
SDRL 2.1310 2.4333 2.6015 2.9078 2.9405 3.3017 

1 ARL 1.2635 1.3225 1.3535 1.4650 1.4740 1.5370 
SDRL 0.5632 0.6471 0.6977 0.8081 0.8314 0.8860 

 
Tab. 6. ARL and SDRL comparison under different error variance values in scenario 5 

   Criterion 
RPLRMEUCL   

4.8104 5.1018 5.3913 5.6462 5.8613 6.0642 
2 0   2 0 .05    2 0.1   2 0 .15   2 0.2   2 0.25   

0 ARL 200.0270 200.3655 200.6080 200.2390 200.0824 199.2450 
SDRL 198.3768 202.8921 203.3510 199.1435 202.0609 202.5535 

0.1 ARL 193.0845 194.5760 196.0710 197.3380 197.9020 198.1715 
SDRL 193.3813 194.6717 197.0311 196.1353 196.4102 196.2692 

0.2 ARL 190.5070 192.4800 192.6140 193.4525 194.0840 194.8685 
SDRL 190.1296 192.7278 192.8264 193.8498 194.8616 193.0579 

0.3 ARL 172.3015 175.3870 176.4730 176.6070 177.6580 178.3040 
SDRL 172.2264 172.4015 177.3245 177.5226 177.9541 178.8112 

0.50 ARL 131.0185 133.5100 135.3715 140.7375 141.9195 142.1545 
SDRL 128.4163 135.2401 135.4230 140.4510 141.8828 141.9179 

0.75 ARL 75.2030 77.8200 80.5470 81.7215 85.1150 86.7445 
SDRL 74.9936 76.8780 80.6289 81.9079 86.6554 86.7219 

1 ARL 33.0060 34.8290 37.5640 42.2255 43.5820 44.7785 
SDRL 32.8341 33.2356 37.4780 42.4154 42.5298 43.7556 

 
Tab. 7. ARL and SDRL comparison under different error variance values in scenario 6 

   Criterion 
RPLRMEUCL   

4.8104 5.1018 5.3913 5.6462 5.8613 6.0642 
2 0   2 0 .05    2 0.1   2 0 .15   2 0.2   2 0.25   

0 ARL 200.0270 200.3655 200.6080 200.2390 200.0824 199.2450 
SDRL 198.3768 202.8921 203.3510 199.1435 202.0609 202.5535 

0.1 ARL 161.5690 163.1995 165.1805 167.5415 169.2515 173.2880 
SDRL 161.0361 161.1632 165.0655 165.9218 169.7752 170.2243 

0.2 ARL 92.9490 97.9600 100.8430 108.2135 111.6610 116.5050 
SDRL 90.7152 94.7094 102.5694 110.6930 112.0497 119.9457 

0.3 ARL 47.3150 51.8035 56.3675 63.0490 70.0625 70.6720 
SDRL 45.5090 51.2175 54.2517 60.3571 70.5067 71.1131 

0.50 ARL 16.9195 18.9950 21.6200 23.5730 25.8125 29.3475 
SDRL 16.5987 17.9258 20.9726 21.9843 24.7490 28.3228 

0.75 ARL 7.9120 8.7765 9.5920 10.8185 11.6465 12.9700 
SDRL 7.4869 8.5333 9.0608 10.2250 11.6724 12.5675 

1 ARL 4.8110 5.3605 5.9730 6.3250 6.6520 7.4070 
SDRL 4.3165 4.8903 5.6324 5.7195 6.1936 6.7696 

 
Tab. 8. ARL and SDRL comparison under different error variance values in scenario 7 

   Criterion 
RPLRMEUCL   

4.8104 5.1018 5.3913 5.6462 5.8613 6.0642 
2 0   2 0 .05    2 0.1   2 0 .15   2 0.2   2 0.25   

0 ARL 200.0270 200.3655 200.6080 200.2390 200.0824 199.2450 
SDRL 198.3768 202.8921 203.3510 199.1435 202.0609 202.5535 
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0.1 ARL 194.6415 195.6575 196. 3930 197.3485 198.6540 198.8185 
SDRL 194.8101 195.0791 196.1245 196.7619   197.5123 198.4807 

0.2 ARL 186.2280 187.0325 187.6900 188.8865 190.4890 193.1945 
SDRL 187.8216 188.0193 188.0547 188.3663 188.1223 193.2670 

0.3 ARL 175.7235 176.3475 177.5375 177.6245 178.0000 180.5335 
SDRL 172.5511 173.0896 176.6114 177.9696 180.3428 185.6862 

0.5 ARL 127.3435 128.7440 138.7395 139.1250 139.5340 142.5995 
SDRL 124.6256 127.2070 135.4627 136.2119 137.9397 144.8344 

0.75 ARL 80.9620 88.3155 93.7785 99.0500 106.7805 108.0015 
SDRL 75.2710 88.9093 89.6775 100.4935 104.9576 106.1982 

1 ARL 55.9760 57.9725 64.5650 69.7905 70.2505 78.9680 
SDRL 56.2406 57.3907 60.9027 68.0019 68.1556 79.3262 

 
In the rest of this section, according to section 3, 
we explore the performance of the RPLRMME 
chart in reducing the undesired impact of error 
contamination. We employ simulation 
experiments considering the same defined out-of-
control scenarios when 2 0.25  . For this 
purpose, the performance of the RPLRME chart 
is compared to RPLRMME chart with 2,3,5m   
measurements per item in terms of ARL and 
SDRL and the results are summarized in Tables 
9-15. The results reveal the superiority of the 
RPLRMME chart over the RPLRME one for 
both sparse or non-sparse shift patterns. That is to 
say, the delay in detection of sustained shifts 
caused by the error contamination can be 
adequately reduced when each item is measured 
several times. For more clarification, Figure 1 
illustrates the percentage of ARL deterioration of 
the RPLRMME chart with 1,2,3m   and 5 under 
the first out-of-control scenario for 

 0.1,0.2,0.3,0.5,0.75,1  . For instance, in this 
scenario when 0.5  , the ARL obtained by the 
RPLRMME chart with 5m   is only 3.634663 
percent larger than that of the no-error case. 
However, under single measurement condition, 
the mentioned difference increases to 42.62781 
percent. This trend can be also observed for the 
other out-of-control scenarios. Besides, as 
indicated, the difference between with and 
without-error cases diminishes as the number of 
measurements per sampled item increases. In 
other words, for large values of m , the ARL 
values approach those obtained under no-error 
cases. The results of Tables 9-15 tell us that the 
run length properties of the RPLRMME chart 
with 5m   inspections per sampled unit is 
approximately similar to those of no-error case. 
The same conclusions can be drawn when SDRL 
metric is taken into account. 

 
Tab. 9. ARL and SDRL values when 2 0.25   and  1,2,3,5m  in scenario 1 

   Criterion 
RPLRMMEUCL   

4.8104 6.0642 5.5185 5.2926 5.0970 
No error 1m    2m   3m   5m   

0 ARL 200.0270 199.2450 201.8091 199.0165 199.4916 
SDRL 198.3768 202.5535 199.1630 192.9853 197.2154 

0.1 ARL 71.8085 96.1550 86.6425 81.5708 77.1850 
SDRL 69.2305 97.5912 87.4703 79.9065 76.7903 

0.2 ARL 18.9235 30.4290 24.8424 22.1050 20.9198 
SDRL 18.5084 30.4888 24.2118 21.1159 20.5495 

0.3 ARL 7.9315 13.4650 10.0922 9.3222 8.8524 
SDRL 7.5446 12.8001 9.5824 8.8027 8.3229 

0.50 ARL 3.2080 4.5755 3.7839 3.5960 3.3246 
SDRL 2.6986 3.9587 3.2522 3.0572 2.7306 

0.75 ARL 1.7765 2.2315 2.0240 1.9196 1.8548 
SDRL 1.2285 1.6713 1.4184 1.3039 1.2758 

1 ARL 1.3030 1.5155 1.4167 1.4072 1.3562 
SDRL 0.6176 0.8923 0.7645 0.7402 0.6927 
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Fig. 1. Percentage of ARL deterioration in scenario 1 

 
Tab. 10. ARL and SDRL values when 2 0.25   and  1,2,3,5m  in scenario 2 

   Criterion 
RPLRMEUCL   

4.8104 6.0642 5.5185 5.2926 5.0970 
No error 1m    2m   3m   5m   

0 ARL 200.0270 199.2450 201.8091 199.0165 199.4916 
SDRL 198.3768 202.5535 199.1630 192.9853 197.2154 

0.1 ARL 151.7150 165.6505 158.3782 153.7458 152.4110 
SDRL 156.9350 162.3510 157.8713 153.9333 151.4356 

0.2 ARL 73.4590 97.8320 84.5340 79.8732 75.9162 
SDRL 75.5450 97.7902 83.4444 78.5593 74.7028 

0.3 ARL 33.2720 49.7135 42.8334 39.3472 36.7922 
SDRL 33.1084 49.5135 42.6793 39.0212 36.3339 

0.50 ARL 10.2085 15.7470 12.6740 11.8168 10.8622 
SDRL 9.6701 14.8825 12.2175 11.6006 10.2842 

0.75 ARL 3.9700 5.7540 4.7766 4.4780 4.3406 
SDRL 3.3421 5.0501 4.2139 3.9376 3.8650 

1 ARL 2.2880 3.0440 2.5774 2.4630 2.3534 
SDRL 1.7273 2.5104 1.9762 1.9489 1.7913 
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Tab. 11. ARL and SDRL values when 2 0.25   and  1,2,3,5m  in scenario 3 

   Criterion 
RPLRMEUCL   

4.8104 6.0642 5.5185 5.2926 5.0970 
No error 1m    2m   3m   5m   

0 ARL 200.0270 199.2450 201.8091 199.0165 199.4916 
SDRL 198.3768 202.5535 199.1630 192.9853 197.2154 

0.1 ARL 182.4620 194.8600 188.2894 193.7182 189.7958 
SDRL 177.0263 194.7752 186.8011 196.6489 189.5215 

0.2 ARL 167.4450 175.1330 168.8866 167.0454 165.2840 
SDRL 167.1549 174.3643 172.8312 167.7489 168.3092 

0.3 ARL 134.4550 143.0055 137.7388 131.2532 130.4826 
SDRL 131.0360 141.4138 138.1823 132.2029 131.7868 

0.50 ARL 62.5985 78.3770 73.1550 67.8338 65.9210 
SDRL 64.5629 79.3273 71.1708 66.3890 65.5718 

0.75 ARL 23.3575 32.3025 27.8096 25.3058 24.6116 
SDRL 22.7927 31.9370 27.5751 25.2759 24.2312 

1 ARL 9.1005 13.9965 11.4574 10.5152 9.8968 
SDRL 8.6486 13.3382 10.6726 9.9103 9.5027 

 
Tab. 12. ARL and SDRL values when 2 0.25   and  1,2,3,5m  in scenario 4 

   Criterion 
RPLRMEUCL   

4.8104 6.0642 5.5185 5.2926 5.0970 
No error 1m    2m   3m   5m   

0 ARL 200.0270 199.2450 201.8091 199.0165 199.4916 
SDRL 198.3768 202.5535 199.1630 192.9853 197.2154 

0.1 ARL 181.3370 187.4475 176.5550 176.4356 176.1178 
SDRL 184.0674 187.5506 176.9491 180.7028 179.2015 

0.2 ARL 112.3760 123.8915 119.9202 115.9962 114.7818 
SDRL 111.1317 123.4841 119.8491 114.9623 116.0651 

0.3 ARL 61.3020 70.8125 65.8958 65.6170 62.9370 
SDRL 61.0218 70.6627 65.1522 64.4477 60.6513 

0.50 ARL 13.4815 18.7240 16.3666 14.6112 14.5450 
SDRL 12.8838 18.4422 15.8692 14.1536 14.1281 

0.75 ARL 2.7455 3.8760 3.2512 3.1202 2.9294 
SDRL 2.1310 3.3017 2.6905 2.5754 2.3644 

1 ARL 1.2635 1.5370 1.3878 1.3332 1.3272 
SDRL 0.5632 0.8860 0.7424 0.6520 0.6787 

 
Tab. 13. ARL and SDRL values when 2 0.25   and  1,2,3,5m  in scenario 5 

   Criterion 
RPLRMEUCL   

4.8104 6.0642 5.5185 5.2926 5.0970 
No error 1m    2m   3m   5m   

0 ARL 200.0270 199.2450 201.8091 199.0165 199.4916 
SDRL 198.3768 202.5535 199.1630 192.9853 197.2154 

0.1 ARL 193.0845 198.1715 198.6568 196.0188 197.0706 
SDRL 193.3813 196.2692 206.0462 198.4430 197.4494 

0.2 ARL 190.5070 194.8685 189.0488 191.8264 184.3404 
SDRL 190.1296 193.0579 182.9238 192.5177 180.7635 

0.3 ARL 172.3015 178.3040 181.2012 176.5138 177.4280 
SDRL 172.2264 178.8112 182.3975 176.9453 181.9473 

0.50 ARL 131.0185 142.1545 139.4750 135.4668 135.0024 
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SDRL 128.4163 141.9179 140.3504 135.1690 134.2531 

0.75 ARL 75.2030 86.7445 81.7062 80.5364 75.5910 
SDRL 74.9936 86.7219 82.5199 78.6665 74.3763 

1 ARL 33.0060 44.7785 39.1652 36.2046 35.0308 
SDRL 32.8341 43.7556 39.1977 35.3549 33.8459 

 
Tab. 14. ARL and SDRL values when 2 0.25   and  1,2,3,5m  in scenario 6 

   Criterion 
RPLRMEUCL   

4.8104 6.0642 5.5185 5.2926 5.0970 
No error 1m    2m   3m   5m   

0 ARL 200.0270 199.2450 201.8091 199.0165 199.4916 
SDRL 198.3768 202.5535 199.1630 192.9853 197.2154 

0.1 ARL 161.5690 173.2880 169.8004 166.4040 159.9754 
SDRL 161.0361 170.2243 170.2430 163.6367 160.6542 

0.2 ARL 92.9490 116.5050 104.1308 97.7810 95.3758 
SDRL 90.7152 119.9457 103.0086 98.3814 95.3568 

0.3 ARL 47.3150 70.6720 58.6210 55.0554 51.1696 
SDRL 45.5090 71.1131 58.9310 55.0585 49.8473 

0.50 ARL 16.9195 29.3475 22.6900 20.7418 18.9808 
SDRL 16.5987 28.3228 22.1158 20.0225 18.2600 

0.75 ARL 7.9120 12.9700 10.0642 9.4114 8.6334 
SDRL 7.4869 12.5675 9.4414 8.9387 8.1535 

1 ARL 4.8110 7.4070 5.9632 5.4426 5.2198 
SDRL 4.3165 6.7696 5.4595 4.8168 4.6219 

 
Tab. 15. ARL and SDRL values when 2 0.25   and  1,2,3,5m  in scenario 7 

   Criterion 
RPLRMEUCL   

4.8104 6.0642 5.5185 5.2926 5.0970 
No error 1m    2m   3m   5m   

0 ARL 200.0270 199.2450 201.8091 199.0165 199.4916 
SDRL 198.3768 202.5535 199.1630 192.9853 197.2154 

0.1 ARL 194.6415 198.8185 200.7230 189.8260 194.4568 
SDRL 194.8101 198.4807 197.2272 191.9087 194.7432 

0.2 ARL 186.2280 193.1945 184.8002 182.3852 182.4656 
SDRL 187.8216 193.2670 184.1209 187.3233 181.2584 

0.3 ARL 175.7235 180.5335 173.3552 169.0096 179.0492 
SDRL 172.5511 185.6862 172.8763 170.4638 180.5072 

0.50 ARL 127.3435 142.5995 137.9468 137.6036 126.4556 
SDRL 124.6256 144.8344 137.6460 138.4305 126.1620 

0.75 ARL 80.9620 108.0015 96.6572 92.2376 86.0044 
SDRL 75.2710 106.1982 95.6434 93.0626 86.9232 

1 ARL 55.9760 78.9680 66.6894 63.7292 57.9780 
SDRL 56.2406 79.3262 64.8023 63.0132 58.2197 

 
5. Conclusions and Future Directions 

In this paper, we proposed a novel control chart 
based on the ridge penalized likelihood ratio 
statistic for Phase II monitoring of high-
dimensional process variability taking the gauge 
impression into account. In contrast to the other 
control charts for covariance matrix monitoring 
under high-dimensionality, the proposed control 
chart relaxes the sparsity assumption of the 
covariance matrix. It means that on one hand, the 
developed chart can be used for monitoring both 

sparse and non-sparse high-dimensional 
covariance matrix, on the other hand it can even 
detect sparce shifts in diagonal and/or off-
diagonal covariance matrix elements. To 
compensate for the adverse effect of 
contamination due to the measurement errors, the 
RPLRME chart statistic was extended such that 
each item in a subgroup is inspected several 
times. To probe the efficiency of the proposed 
RPLRME chart, seven out-of-control scenarios 
including both sparse and non-sparse shifts in 
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high-dimensional covariance were defined. Then, 
extensive simulation studies in terms of the ARL 
and SDRL metrics were implemented to 
investigate how gauge inaccuracy deteriorates the 
sensitivity of the proposed chart in the detection 
of different anomalies in diagonal and/or off-
diagonal elements. As expected, the results 
confirmed that the gauge’s inability to accurately 
measure the process observations reduces the 
sensitivity of the developed control chart while 
employing multiple measurements approach can 
adequately compensate for the undesired impact 
of contaminated observations due to 
measurement errors. In other words, the detection 
capability of the developed RPLRMME chart 
approaches no-error case when the number of 
inspections per sampled item increases. The 
future studies can be extended in two directions: 
(1) developing control charts for monitoring the 
variability of the high-dimensional process with 
finite horizon productions, and (2) investigating 
the impact of estimation error on conditional ARL 
properties of the proposed RPLRME control 
chart. 
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